Dental implants supporting single crowns represent a well-documented therapy for the restoration of single tooth gaps showing high long-term survival rates.\(^1\) Despite varying rates of technical, biologic, and functional success, the long-term survival of single-implant-supported crowns is consistently high, with many studies reporting success rates above 90% after 10 years of function.\(^1\) The success of these treatments is due to a combination of factors, including precise surgical planning and implant placement, the use of precision abutments to achieve optimal prosthetic results, and appropriate treatment planning to support the restoration.

Purpose

To test whether or not immediate loading of single-implant crowns renders different results from early and conventional loading with respect to implant survival, marginal bone loss, stability of peri-implant soft tissue, esthetics, and patient satisfaction.

Materials and Methods

An electronic search of Medline and Embase databases including studies published prior to August 1, 2012, was performed and complemented by a manual search. Randomized controlled trials (RCTs) comparing different loading protocols of single-implant crowns with a follow-up after restoration of at least 1 year were included. A meta-analysis yielded odds ratios (OR) and standardized mean differences (SMD) together with the corresponding 95% confidence intervals (95% CI). Results: The search provided 10 RCTs comparing immediate and conventional loading and 1 RCT comparing immediate and early loading. When assessing the implant survival at 1 year of loading, the meta-analysis of 10 studies found no significant differences between immediate and conventional loading (OR = 0.75; 95% CI: 0.32 to 1.76).

The total difference of marginal bone loss during the first year of function between immediate and conventional loading protocols in 7 RCTs did not reach statistical significance (SMD = -0.05 mm; 95% CI: -0.41 to 0.31 mm). There were no significant differences between immediate and conventional loading regarding implant survival and marginal bone loss at 2, 3, and 5 years of loading.

Three RCTs comparing the change of papilla level between immediate and conventional loading identified no significant differences. One study investigated the recession of the buccal mucosa after implant placement and found significantly inferior soft tissue loss for immediate loading as compared to conventional loading. Two RCTs investigated the recession of the buccal mucosa after insertion of the definitive crown and found no differences between immediate and conventional loading. The esthetics and the patient satisfaction were assessed in one and two RCTs, respectively. There were no significant differences between immediate and conventional loading.

Conclusions

Immediately and conventionally loaded single-implant crowns are equally successful regarding implant survival and marginal bone loss. This conclusion is primarily derived from studies evaluating implants inserted with a torque ≥ 20 to 45 Ncm or an implant stability quotient (ISQ) ≥ 60 to 65 and with no need for simultaneous bone augmentation. Immediately and conventionally loaded implants do not appear to differently affect the papilla height during the first year of loading. Due to the heterogeneity of the time point of baseline measurements and contradictory findings in the studies, it is difficult to draw clear conclusions regarding the recession of the buccal mucosa. With respect to the assessment of esthetic outcomes and patient satisfaction, the data available remain inconclusive.
esthetic complications, this treatment modality can be considered a safe and predictable therapeutic option.1

Traditional clinical guidelines recommended the placement of implants in healed sites, followed by 3 to 6 months of submucosal healing prior to functional loading.2 Subsequently, new clinical protocols have been applied, aiming at shortening the overall treatment duration and reducing the number of surgical interventions. These protocols were characterized by decreased time spans between tooth removal, implant placement, and delivery of the implant-supported prosthesis.

Several clinical studies showed similar short-term survival rates of single implants either loaded conventionally, early, or immediately after implant placement.3–9 These favorable results have been reported for single implants placed in anterior and posterior regions of the jaw.

In addition to implant and crown survival rates, stability of the peri-implant bone and soft tissues are important factors for determining the clinical success of dental implant treatment. Several controlled clinical studies investigating marginal bone loss at single implants did not reveal significant differences among implants that were loaded at different time points following the implant placement.3,4,10,11

With respect to the facial soft tissue levels, heterogeneous results were found between studies comparing different loading protocols. One study found immediate loading of implants inserted into fresh extraction sockets, leading to more favorable levels of facial soft tissue compared with delayed loading.10 On the other hand, studies investigating single tooth implants inserted into healed sites described similar soft tissue levels for conventionally and immediately loaded implants.3,12

Besides functional and health-related aspects, the visual appearance of the reconstruction becomes an important factor for clinical success in esthetic sites. It has recently been stated that the scientific literature regarding esthetic outcomes in implant dentistry remains inconclusive.13,14 This statement was formulated because of the lack of studies using objective and well-defined parameters for the assessment of esthetics.

Furthermore, it is currently widely accepted that clinical measures provide limited understanding regarding patients’ perceptions. Therefore, a standardized use of validated patient-reported outcome measures (eg, patient satisfaction) was recommended for clinical re-

The highest level of evidence for answering clinical questions derives from systematic reviews analyzing the results of randomized controlled clinical trials (RCTs).17 The aim of the present systematic review was, therefore, to test whether or not the immediate loading of single-implant crowns render different clinical results from early and conventional loading with respect to implant survival rate, marginal bone loss, stability of peri-implant soft tissue, esthetics, and patient satisfaction.

MATERIALS AND METHODS

This systematic review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines.18

Focus Question

The following focus question was developed according to the PICO (population, intervention, comparison, outcome) format for this review: Does immediate loading of single-implant crowns render different results from early and conventional loading with respect to implant survival rate, marginal bone loss, stability of peri-implant soft tissue, esthetics, and patient satisfaction?

Search Strategy

An electronic search of Medline (PubMed) and Embase databases was performed including studies published prior to August 1 2012. The search was limited to publications with abstract (text options), published in English, French, and German (language). The search strategy is summarized in Table 1.

The electronic search was complemented by a manual search of reference lists of the reviews published from January 1, 2009, to July 31, 2012. Additionally, the bibliographies of the reviews on loading protocols from the 4th ITI Consensus Conference (2008) were screened.

Selection of Studies

The criteria for inclusion and exclusion of studies are specified in Table 1.

Two investigators independently performed the literature search including selection of titles, abstracts, and full-text publications. Any disagreement regarding inclusion was resolved by a discussion between the two investigators. All titles obtained by the search were screened for meeting the selection criteria. If the title did not contain sufficient information for exclusion, it was selected for the abstract evaluation. Subsequently, the abstracts of all potentially relevant titles were reviewed based on the selection criteria. Cohen’s kappa coefficient (κ) was used as measure of inter-reviewer agreement for the title and the abstract selection.19 The selected abstracts were obtained as full texts and screened for the final inclusion by reading the Materials and Methods and Results sections. The reason for rejecting studies based on the full-text evaluation was recorded.

The International Journal of Oral & Maxillofacial Implants 223
The data were extracted independently by two reviewers using data extraction tables. Disagreement regarding data extraction was resolved by a discussion between the two reviewers.

The implant loading protocols were classified as follows:

- **Immediate loading**: prosthesis connected to the dental implant within 1 week subsequent to implant placement.
- **Early loading**: prosthesis connected to the dental implant between 1 week and 2 months subsequent to implant placement.
- **Conventional loading**: prosthesis connected to the dental implant > 2 months subsequent to implant placement.

The following data were extracted from the full-text publications: author(s), year of publication, loading protocol, time of implant placement following tooth extraction, number of patients included, number of patient drop-outs, number of implants placed, number of implant drop-outs, follow-up period of loading, jaw, intraoral region, implant system, implant length and diameter, implant insertion torque, implant stability quotient (ISQ), simultaneous bone augmentation procedure, and number of implant failures. Mean
and standard deviation values of marginal bone loss were recorded between the implant placement and the annual follow-up examinations. The patient cohorts presenting a gain of marginal bone following implant placement were excluded from the analysis of the marginal bone level. Mean and standard deviation values of recessions of midbuccal mucosa and of interproximal papillae were recorded between the implant placement, the insertion of the final crown, and the 1-year follow-up examination. In addition, results regarding the esthetics of peri-implant mucosa and crowns and the patient’s satisfaction were recorded.

Quality Assessment

Two reviewers independently assessed the methodological quality of the included studies, by using the Cochrane risk of bias tool²¹ for RCTs. For this purpose, the Materials and Methods, Results, and Discussion sections of the publications were evaluated. Any disagreement between the reviewers was resolved by a discussion aiming for consensus.

Statistical Analysis

A meta-analysis of binary and continuous outcome variables was computed for RCTs (STATA software version 10.1) if there were at least two studies comparing the same loading protocols and reporting the same outcome measures.

For binary outcomes (eg, implant survival) the estimate of the effect of an intervention was expressed as odds ratio (OR) and 95% confidence interval (CI). For continuous outcomes (eg, marginal bone loss, soft tissue recession) mean differences and standard deviations (SD) were used to calculate standardized mean differences (SMD) and 95% CI.

The outcomes were pooled by using both the fixed effect model (Mantel-Haenzel-Peto test) and the random effect model (Dersimonian-Laird test). The Q-test for heterogeneity was performed and the corresponding forest plots were drawn. If a significant heterogeneity was found, the results of the random effect model have been considered valid. In cases with no evidence of heterogeneity the results of the fixed effect model were considered valid. The level of statistical significance was set at $P \leq .05$.

RESULTS

Literature Search

The search of the electronic databases yielded a total of 2,726 titles (Fig 1). A total of 1,437 potentially relevant titles were selected by the two reviewers for abstract evaluation (inter-rater agreement $\kappa = 0.81$). The screening of the abstracts resulted in the selection of 297 publications (inter-rater agreement $\kappa = 0.88$).

A manual search of the 17 reviews rendered an additional 25 relevant publications (see Appendix 1 in online edition). After the full-text evaluation, 174 publications were excluded (see Appendix 2 in online edition).
The reasons for excluding studies based on the full-text evaluation are specified in Table A1 (see online edition). A total of 131 publications fulfilled the inclusion criteria, of which 11 were RCTs comparing different loading protocols. Due to the significant number of RCTs available for analysis, 120 non-RCTs were excluded from the analysis (see Appendix 3 in online edition).

Study Characteristics

In 11 RCTs, a total number of 597 single implants were placed. The characteristics of the included studies are presented in Table 2.

There were 10 RCTs comparing immediate and conventional loading protocols. In one study, one out of three groups under investigation (ostotome technique in combination with immediate loading) was excluded from the meta-analysis. In the included studies, 286 implants were immediately loaded and 294 implants were conventionally loaded. The grouping of studies according to the duration of the follow-up period of loading yielded the following results: six studies analyzed a loading period of up to 1 year, two up to 2 years, one up to 3 years, and one up to 5 years. In six studies the need for simultaneous bone augmentation at implant placement was considered as an exclusion criterion. Seven studies included implants inserted with a minimal insertion torque ranging from 20 to 45 Ncm. In four studies, a minimal ISQ ranging from 60 to 65 was considered as an inclusion criterion. There were no studies evaluating implants placed in the maxillary molar region.

One RCT compared immediately and early loaded implants. The follow-up period of these 17 implants amounted to 1 year. This study included implants inserted with a minimum torque of 30 Ncm and presenting no peri-implant bone defects at implant placement.

Parameters and Methods of Measurement

Eleven RCTs assessed implant survival. In eight trials, the level of interproximal bone level was measured by means of periapical radiographs immediately following the implant placement and at the annual follow-up examinations. The level of papillae and the level of buccal mucosa were evaluated and expressed in millimeters in three studies each. In one study, the measurements were clinically performed prior to tooth extraction and after 1 year by means of acrylic stents with direction grooves. In another RCT, the assessment was performed 6 months after the implant placement and at the 1-year follow-up. For this purpose, calibrated digital photographs were analyzed and the incisal edge of the implant-supported crown was used as reference for the measurement. One publication reported the results of the examinations at 3 months.

Table 2 Characteristics of the Included Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of publication</th>
<th>Loading protocol</th>
<th>Occlusal contact</th>
<th>Implant placement (type 1-4)</th>
<th>No. of patients</th>
<th>No. of drop-outs</th>
<th>No. of implants</th>
<th>No. of implant drop-outs</th>
<th>Follow-up period (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crespi et al</td>
<td>2008</td>
<td>Immediate</td>
<td>Yes</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>De Rouck et al</td>
<td>2009</td>
<td>Immediate</td>
<td>No</td>
<td>1</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Degidi et al</td>
<td>2009</td>
<td>Immediate</td>
<td>No</td>
<td>2,3,4</td>
<td>30</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>den Hartog et al</td>
<td>2011</td>
<td>Immediate</td>
<td>No</td>
<td>3,4</td>
<td>31</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>1.5</td>
</tr>
<tr>
<td>Donati et al</td>
<td>2008</td>
<td>Immediate</td>
<td>Yes</td>
<td>3.4</td>
<td>NR</td>
<td>NR</td>
<td>50</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gündüz et al</td>
<td>2008</td>
<td>Immediate</td>
<td>Yes</td>
<td>4</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hall et al</td>
<td>2007</td>
<td>Immediate</td>
<td>No</td>
<td>2,3,4</td>
<td>14</td>
<td>1</td>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prosper et al</td>
<td>2010</td>
<td>Immediate</td>
<td>Yes</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Schincaglia et al</td>
<td>2008</td>
<td>Immediate</td>
<td>Yes</td>
<td>3.4</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Shibl et al</td>
<td>2010</td>
<td>Immediate</td>
<td>NR</td>
<td>1</td>
<td>30</td>
<td>1</td>
<td>30</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Testori et al</td>
<td>2007</td>
<td>Immediate</td>
<td>No</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1, incisive; C, canine; PM, premolar; M, molar; NR, not reported.
after implant placement and at the 1-year follow-up. In this study, the level of the papillae was clinically assessed. The line between the mucosal margin of the implant-supported crown and the gingival margin of the adjacent tooth was used as a reference structure. In one study, the level of facial mucosa was clinically assessed 4 weeks after the insertion of the definitive crown and at the 1-year examination. In the immediate loading group the definitive crowns were inserted 12 weeks after the implant placement, whereas in the conventional loading group this occurred 32 weeks after the implant placement. A circumferential reference line on the surface of the definitive crown was used for the clinical measurements.

Quality Assessment
The results of the quality assessment of the included RCTs are presented in Table 3. No study fulfilled all the criteria for the control of bias as described in the Cochrane Collaboration's tool for assessing risk of bias (Table 3).

Study Outcomes
Implant Survival. The results regarding implant survival are summarized in Table 4.

In RCTs comparing immediate and conventional loading, 275 of the original 284 immediately loaded implants (96.8%) survived up to 1 year of function, whereas 283 of the 289 implants assigned to conventional loading (97.9%) survived up to 1 year. The meta-analysis of the 10 trials found no significant differences with OR fixed-effects of 0.75 (95% CI: 0.32 to 1.76) and no evidence of heterogeneity (Fig 2). In the four RCTs evaluating implants at 2 years of loading, 136 of the 139 immediately loaded implants (97.8%) and 135 of the 139 implants assigned to conventional loading (97.1%) were in situ at the follow-up examination. The meta-analysis did not reveal significant differences between the treatment groups with OR fixed-effects of 1.26 (95% CI: 0.33 to 4.80) and no evidence of heterogeneity (Fig 3). Immediately and conventionally loaded implants were examined at 3 years of loading in two trials. Based on the meta-analysis of these studies, there were no differences between the two loading protocols (Fig 4). In one RCT, immediately and conventionally loaded implants were assessed at 5 years of loading. In both treatment groups in this study there were two implant failures rendering an implant survival rate of 96.7% in each group.

In one study comparing immediate and early loading, 17 implants were evaluated at 1 year of function. One out of seven immediately loaded implants failed 2 months after the implant placement. There were no implant failures in the early loading group.
Table 3 Quality Assessment of RCTs Based on The Cochrane Collaboration’s Tool for Assessing Risk of Bias

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of publication</th>
<th>Adequate sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding</th>
<th>Incomplete outcome data addressed</th>
<th>Free of selective reporting</th>
<th>Free of other sources of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crespi et al<sup>5</sup></td>
<td>2008</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Degidi et al<sup>4</sup></td>
<td>2009</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>De Rouck et al<sup>10</sup></td>
<td>2009</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>den Hartog et al<sup>3</sup></td>
<td>2011</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Donati et al<sup>22</sup></td>
<td>2008</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Güncü et al<sup>23</sup></td>
<td>2008</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Hall et al<sup>12</sup></td>
<td>2007</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Prosper et al<sup>24</sup></td>
<td>2010</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Partial</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Schincaglia et al<sup>25</sup></td>
<td>2008</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Shibly et al<sup>6</sup></td>
<td>2010</td>
<td>Yes</td>
<td>Unclear</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Testori et al<sup>26</sup></td>
<td>2007</td>
<td>Yes</td>
<td>Partial</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 4 Implant Survival Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of publication</th>
<th>Loading protocol</th>
<th>No. of implants</th>
<th>No. of implant drop-outs</th>
<th>Mean follow-up (y)</th>
<th>At 1 y</th>
<th>No. of failures</th>
<th>Survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crespi et al<sup>5</sup></td>
<td>2008</td>
<td>Immediate</td>
<td>20</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>20</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Rouck et al<sup>10</sup></td>
<td>2009</td>
<td>Immediate</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td>Degidi et al<sup>4</sup></td>
<td>2009</td>
<td>Immediate</td>
<td>30</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>30</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>den Hartog et al<sup>3</sup></td>
<td>2011</td>
<td>Immediate</td>
<td>31</td>
<td>0</td>
<td>1.5</td>
<td>1</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>31</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Donati et al<sup>22</sup></td>
<td>2008</td>
<td>Immediate</td>
<td>50</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>57</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Güncü et al<sup>23</sup></td>
<td>2008</td>
<td>Immediate</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Hall et al<sup>12</sup></td>
<td>2007</td>
<td>Immediate</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>92%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Prosper et al<sup>24</sup></td>
<td>2010</td>
<td>Immediate</td>
<td>60</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>60</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td>Schincaglia et al<sup>25</sup></td>
<td>2008</td>
<td>Immediate</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>93%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Shibly et al<sup>6</sup></td>
<td>2010</td>
<td>Immediate</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>93%</td>
<td></td>
</tr>
<tr>
<td>Testori et al<sup>26</sup></td>
<td>2007</td>
<td>Immediate</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>86%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Marginal Bone Loss. Table 5 depicts the data for marginal bone loss between the implant placement and the annual follow-up examinations.

Seven RCTs comparing 215 immediately and 224 conventionally loaded implants reported marginal bone level changes at 1 year of loading. The heterogeneity reached statistical significance ($P = .003$). The meta-analysis found no significant differences with SMD random-effect -0.05 mm (95% CI: -0.41 to 0.31 mm) (Fig 5). In two trials immediate and conventional loadings were compared with regards to bone level change at 2 years of function.4,5 The SMD fixed-effect amounted to -0.06 mm (95% CI: -0.45 to 0.34 mm) with no significant difference between the two treatment groups (Fig 6). One RCT compared 30 immediately and 30 conventionally loaded implants and found no differences in marginal bone loss at the 3-year follow-up examination.6 In one study the outcomes of immediate and conventional loading were assessed 5 years after prosthesis delivery.24 The mean marginal bone loss for immediately and conventionally loaded implants amounted to 1.31 mm and 1.01 mm, respectively. There was no significant difference between the two groups.

Papilla Level. The results of the change in papilla level are presented in Table 6.
Fig 3 Results of meta-analysis for the comparison of implant survival at 2 years between immediate and conventional loading.

Table 5 Marginal Bone Loss Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of publication</th>
<th>Loading protocol</th>
<th>Marginal bone loss (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>At 1 y (mean ± SD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crespi et al5</td>
<td>2008</td>
<td>Immediate</td>
<td>1.02 ± 0.53</td>
</tr>
<tr>
<td></td>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De Rouck et al10</td>
<td>2009</td>
<td>Immediate</td>
<td>0.86 ± 0.54</td>
</tr>
<tr>
<td></td>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degidi et al4</td>
<td>2009</td>
<td>Immediate</td>
<td>0.69 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>den Hartog et al3</td>
<td>2011</td>
<td>Immediate</td>
<td>0.91 ± 0.61</td>
</tr>
<tr>
<td></td>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donati et al22</td>
<td>2008</td>
<td>Immediate</td>
<td>0.32 ± 0.87</td>
</tr>
<tr>
<td></td>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Güncü et al23</td>
<td>2008</td>
<td>Immediate</td>
<td>0.45 ± 0.39</td>
</tr>
<tr>
<td></td>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prosper et al24</td>
<td>2010</td>
<td>Immediate</td>
<td>0.24 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schincaglia et al25</td>
<td>2008</td>
<td>Immediate</td>
<td>0.77 ± 0.38</td>
</tr>
<tr>
<td></td>
<td>Conventional</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Positive values represent bone loss.

© 2014 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER.
One RCT evaluated the change of papilla height between the implant placement and the 1-year follow-up at conventionally and immediately loaded implants placed into fresh extraction sockets. At 1-year of follow-up, the mean recession of mesial and distal papillae ranged from 0.31 to 0.53 mm with no significant differences between immediate and conventional loading.

Two RCTs evaluated the level of the papillae at immediately and conventionally loaded implants between insertion of the definitive crown and the 1-year follow-up. In one study, average papilla recession was found in both groups, ranging from 0.21 to 0.55 mm. In the other study, an average gain of papilla height was reported for both groups. The meta-analysis of the

<table>
<thead>
<tr>
<th>Study</th>
<th>Year of publication</th>
<th>Loading protocol</th>
<th>At 1 y after implant placement (mm)</th>
<th>At 1 y after placement of definitive prosthesis (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mesial (mean ± SD)</td>
<td>Distal (mean ± SD)</td>
</tr>
<tr>
<td>De Rouck et al<sup>10</sup></td>
<td>2009</td>
<td>Immediate</td>
<td>0.44 ± 0.77</td>
<td>0.31 ± 0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>0.43 ± 0.42</td>
<td>0.53 ± 0.55</td>
</tr>
<tr>
<td>den Hartog et al<sup>3</sup></td>
<td>2011</td>
<td>Immediate</td>
<td>0.43 ± 1.20</td>
<td>0.21 ± 1.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conventional</td>
<td>0.55 ± 1.14</td>
<td>0.50 ± 0.95</td>
</tr>
</tbody>
</table>

Positive values represent papilla recession.
two RCTs did not reveal significant differences between immediate and conventional loading (Figs 7 and 8).

Midbuccal Mucosa Level. The results of the midbuccal mucosal recession are summarized in Table 7.

In one RCT comparing immediately and conventionally loaded implants placed into fresh extraction sockets, the level of the midbuccal mucosa was recorded at implant placement and at the 1-year follow-up. The immediate loading group presented a mean mucosal recession of 0.41 mm, whereas in the conventional loading group the midbuccal mucosa receded by 1.16 mm on average. The difference between the study groups was statistically significant.

Two studies including 42 immediately and 43 conventionally loaded implants recorded the level of the facial soft tissue at definitive crown insertion and at the 1-year follow-up. There was no evidence of heterogeneity and the meta-analysis did not reveal significant differences with SMD fixed-effects –0.14 mm (95% CI: –0.57 to 0.29 mm) (Fig 9).

Esthetic Outcomes. Only one RCT included in the present review assessed the overall esthetic out-
comes.3 In this study, the esthetics of peri-implant mucosa and crowns at immediately and conventionally loaded implant sites were determined using the Pink Esthetic Score-White Esthetic Score (PES-WES)27 and Implant Crown Esthetic Index (ICEI).28 The mucosal esthetics were rated with a mean PES of 7.1 ± 1.5 (range: 3 to 10) and 6.5 ± 1.6 (range: 4 to 10) for the immediate and the conventional group, respectively. According to ICEI, the mucosal esthetics were satisfactory in 24 cases (80%) in the immediate loading group and in 19 cases (62%) in the conventional loading group. One case in both groups showed excellent soft tissue esthetics. The esthetics of the crown, expressed as WES, amounted to 7.8 ± 1.5 (range: 4 to 10) in the immediate loading group and to 7.6 ± 1.6 (range: 4 to 10) in the conventional loading group. None of the scores described in these studies showed significant differences between the two groups under investigation.

Patient Satisfaction. One RCT analyzed the patient satisfaction after immediate and conventional loading of implants.3 Satisfaction regarding function, esthetics and treatment procedures was assessed using a form comprised of questions to be answered on a five-point rating scale. In addition, the overall satisfaction was measured using a 100-mm visual analog scale (VAS). Patient satisfaction was generally high and no differences were observed between the groups. However, approximately one-third of the patients in the conventional loading group judged the healing time after implant placement as long.

Another trial comparing immediate and conventional loading of implants placed into fresh extraction sockets evaluated patient satisfaction regarding esthetics by means of a 100-mm VAS.10 This study reported an average patient satisfaction of 93% (range: 80% to 96%) for the immediate loading. The satisfaction for the conventional loading amounted to 91% (range: 80% to 96%) with no significant difference between the groups.

Discussion

Implant Survival and Marginal Bone Level

Ten RCTs comparing immediately and conventionally loaded implants and one RCT comparing immediately and early loaded implants met the inclusion criteria. The meta-analysis of data from the included trials did not reveal differences between immediately and conventionally loaded implants with regards to implant survival and marginal bone loss. The majority of the included studies evaluated implants inserted with a minimal torque in the range of 20 to 45 Ncm or a minimal ISQ in the range of 60 to 65. In addition, approximately half of the included studies considered the presence of peri-implant bone defects at implant insertion as an exclusion criterion.

Two recent systematic reviews did not find a significant effect of the loading protocol on implant survival and marginal bone loss.29,30 Differently from the present study, however, these reviews included trials evaluating both single and splinted implants. In a previous systematic review comparing immediate, early, and conventional loading of single-implant restorations in the esthetic zone, no significant differences were found regarding the implant survival and marginal bone loss.31

It has been stated that a high degree of primary implant stability is one of the prerequisites for successful outcomes of immediate or early loading.29 From the clinical standpoint, it is important to know what amount of primary stability is required to immediately or early load a single implant. Moreover, there are different methods for the assessment of primary implant stability.

In a previous study, a significant correlation was found between implant insertion torque and early failures of immediately restored single implants.32 Nine out of 10 immediately loaded implants placed with 20 Ncm failed versus only 1 out of 10 inserted with a torque of 32 Ncm. In this study, step-cylinder type
implants were used. The implant survival rate was independent of implant length, site, bone quality and quantity. It was, therefore, concluded that an insertion torque of 32 Ncm is necessary to achieve osseointegration of immediately loaded implants. In another study, 50 patients received two single nonadjacent implants, randomly inserted with a torque ranging from 25 to 35 Ncm or being above 80 Ncm. Nonoccluding provisional crowns were inserted immediately after implant placement. At 6 months of loading, seven implants inserted with a torque ranging from 25 to 35 Ncm failed whereas none of the implants failed inserted with high insertion torque. The difference of the implant survival rate between groups was statistically significant. There were no significant differences with regards to marginal bone loss and complication rates. The investigators concluded that an insertion torque of 35 Ncm was not sufficient to achieve high survival rates for immediately loaded single implants.

In contrast, several clinical studies reported high survival rates for immediately loaded implants inserted with low insertion torques. A retrospective clinical study evaluated immediately restored, single-tooth implants placed into fresh extraction sockets with a torque of ≤ 25 Ncm. Lack of axial stability was an exclusion criterion in this study. At 1.25 to 9.5 years of loading, an implant survival rate of 95.5% and optimal maintenance of marginal bone levels were found.

Another parameter for the assessment of primary implant stability is ISQ as measured by resonance frequency analysis (RFA). Interestingly, several preclinical and clinical studies found a lack of correlation between insertion torque and ISQ. These results may be explained by the fact that ISQ is a measure of axial stiffness between implant and bone. In contrast, the insertion torque corresponds to the degree of rotational friction between an implant and the surrounding bone tissue.

Currently, results remain inconclusive regarding the minimum insertion torque and the minimum ISQ needed to achieve successful osseointegration of immediately or early loaded implants. Hence, more research is needed to make clear clinical recommendations.

Level of Interproximal Papillae

The results of the present review indicated that the timing of the restorative procedure does not influence the level of the papillae at single-implant crowns at 1 year of function.

Only one RCT included in this review evaluated the change of papilla height between implant placement and the 1-year follow-up. This study compared conventionally and immediately loaded implants placed into fresh maxillary extraction sockets. The mean papilla shrinkage at 3 months was about twice as high in the conventional group as in the immediate loading group (0.9 mm vs 0.5 mm). In the following 9 months, papillae at conventionally loaded implants showed a tendency to fill the proximal spaces. At the 1-year follow-up, the mean recession of mesial and distal papillae ranged from 0.3 to 0.5 mm with no significant differences between immediate and conventional loading. Two RCTs included in this systematic review measured the change of the papilla height from the insertion of the definitive crown to the 1-year follow-up at immediately and conventionally loaded implants. In both studies, implants were placed into sites with healed soft tissues. In one trial, a mean gain of the papilla height of approximately 0.3 mm was observed in both treatment groups. In contrast, the other RCT recorded a minimal mean recession of the papillae between 3- and 12-month examinations. The meta-analysis of data from the two trials did not reveal significant differences between immediate and conventional loading.

Other clinical studies, not meeting the inclusion criteria of the present systematic review, investigated immediately loaded implants placed into fresh extraction sockets in the anterior maxilla. These studies measured the changes of the soft tissue level 12 months following the implant placement in relation to the preoperative status. The average papilla recession ranged from 0.3 to 0.5 mm. The papilla recession at conventionally loaded implants was evaluated in a study, in which 3 months of healing was allowed before restoration. The measurements were taken prior to the implant placement and repeated at the insertion of the provisional, at 3 and 15 months. When compared to the presurgical soft tissue level, approximately 1 mm of papilla recession was recorded at the time of insertion of the provisional restoration, after which little changes took place. Other clinical studies assessed the change of the papilla level from the insertion of the definitive crown to the 1-year examination. In the majority of the trials a slight gain of the papilla height was found during this time frame for both immediately and conventionally loaded implants. In a recent publication, immediately loaded implants placed into fresh extraction sockets were followed up to 2 to 8 years. When compared to the pre-surgical status, mesial and distal papillae had lost 0.53 mm and 0.39 mm of height at the 1-year follow-up. The corresponding values at the last examination amounted to 0.22 mm and 0.21 mm. These results indicate that a recession of the papilla level occurs after implant placement and that the papillae have the capacity of growing following incorporation of the restoration. The papilla growth following the crown insertion, however, does not completely compensate the postoperative papilla recession.
Level of Buccal Mucosa

Only one RCT included in the present systematic review assessed the change of the buccal mucosa level from implant placement to the 1-year follow-up. This study compared immediately and conventionally loaded implants placed into fresh extraction sockets. In the conventional loading group, the buccal mucosa receded by 1.2 mm in average, whereas immediate loading of implants led to 0.4 mm of mucosal recession. The difference between the groups was statistically significant. It was, therefore, concluded that immediate restoration of implants placed into fresh extraction sockets help limit the amount of buccal mucosal recession. Two RCTs analyzed in this review recorded the level of the facial soft tissue at the insertion of the definitive crown and at the 1-year follow-up. In both studies implants were placed into sites with healed soft tissues. One study found stable mucosal levels at the 1-year follow-up for both immediate and conventional loading. In the other trial mucosal recession amounting to 0.67 mm and 0.33 mm, respectively, was reported for immediate and conventional loading. This difference did not reach statistical significance. The meta-analysis of the data from the two investigations did not reveal significant differences between immediate and conventional loading.

Other clinical studies, not meeting the inclusion criteria of the present systematic review, investigated immediately loaded maxillary implants. These trials measured the change of the buccal mucosa level 1 year following the implant placement in relation to the preoperative status. The average soft tissue recession ranged from 0.12 mm to 0.67 mm. A recent systematic review included three trials investigating immediately loaded implants placed into fresh extraction sockets in the anterior maxilla. The calculated average recession of the buccal mucosa from implant placement to the 1-year follow-up was 0.5 mm. Recession of the midbuccal mucosa at conventionally loaded implants was evaluated in a study described above. The measurements were taken prior to the implant placement and repeated at the insertion of the prosthetic and at 3 and 15 months. When compared to the pre-surgical soft tissue level, 0.8 mm of mucosal recession was recorded at the time of insertion of the prosthesis, after which little changes took place. Other studies evaluated the level of the facial mucosa at the insertion of the definitive crown and at the 1-year examination. A trial investigating immediately loaded implants found 0.3 mm of gain of the midbuccal mucosal level. Several clinical studies analyzing conventionally loaded implants reported stable mean buccal mucosal level at 1 year of function. In contrast, one trial with 11 conventionally loaded implants found a mean mucosal recession amounting to 0.6 mm.

In a recent publication, immediately loaded implants placed into fresh extraction sockets were followed up to 2 to 8 years. Significantly more recession of the facial mucosa was reported at the last examination (1.13 mm) as compared to the 1-year follow-up (0.55 mm). These results indicate that recession of the buccal mucosa occurs after implant placement and can become more pronounced in the long term.

Esthetic Outcomes

Only one study included in the present systematic review reported the outcomes regarding esthetics following immediate and conventional implant loading. In this study, the esthetics of peri-implant mucosa and implant crown were determined using the PES-WES and ICEI. There were no differences between the two groups under investigation.

Other clinical studies evaluating the esthetics of single-implant crowns by means of PES-WES and ICEI reported similar results. In these studies, the mean total PES-WES for conventionally loaded single-implant crowns ranged from 13.5 to 16.8. In a study including 93 patients with conventionally loaded single-implant crowns in the anterior maxilla, the mean ICEI amounted to 4.8. The overall result was rated as acceptable in 66% of the cases.

Patient Satisfaction

Two RCTs analyzed in the present review reported patient satisfaction following immediate and conventional implant loading. Patient satisfaction was high and no differences were observed between the groups. Other clinical studies evaluating the patient satisfaction after immediate and conventional loading of single-implant crowns by means of a VAS reported similar findings. It is well documented that patient satisfaction with esthetics can considerably differ from that of professionals, with patients usually showing a higher degree of satisfaction. This indicates that concerning the esthetics of implant-supported reconstructions and their surrounding tissues, patients may have different views regarding the factors contributing to a satisfying result.

Time Points of Baseline Measurements

It is obvious that to assess the influence of a given therapeutic intervention on a certain parameter, baseline measurements are ideally performed prior to the intervention under investigation. In other words, to compare the effect of immediate and conventional loading protocols on peri-implant tissues, baseline assessments should be performed at implant placement in both groups.

Regarding marginal bone loss, a reasonable number of RCTs were found reporting bone level changes from
a baseline at the time of implant placement. Hence, a large amount of data were available for analysis.

In contrast, as far as soft tissue changes are concerned, only one RCT was found evaluating changes of the soft tissues with implant placement as the baseline for measurement. Therefore, inclusion was extended to studies reporting changes in soft tissue with insertion of the final crown as the baseline. As a consequence, the comparability of the results from different studies regarding mucosal levels was hampered by the fact that different time points for baseline measurements (implant placement and final crown insertion) were selected.

Study Strength and Limitation

The present systematic review included only the highest level of evidence (data from RCTs) for examining whether or not immediate loading of single-implant crowns rendered different results from early and conventional loading. One previous systematic review investigating the effects of different loading protocols on single-implant crowns included RCTs, controlled clinical trials, cohort studies, and case series. Two other systematic reviews on loading protocols included studies investigating both single and splinted implants.

The main limitation of this review is the fact that the majority of the included studies did not provide observations beyond 1 year of implant function. In addition, only a limited number of trials were found evaluating the levels of peri-implant soft tissue, esthetics, and patient satisfaction.

CONCLUSIONS

Based on the findings of the present systematic review it can be concluded that for single-implant crowns:

- Immediately and conventionally loaded implants are equally successful clinical procedures regarding implant survival and marginal bone loss. This conclusion is primarily derived from studies evaluating implants inserted with a minimal torque in the range of 20 to 45 Ncm or a minimal ISQ in the range of 60 to 65 and with no need for simultaneous bone augmentation. In addition, most studies did not include observation periods beyond 1 year of implant function.
- Immediately and conventionally loaded implants do not appear to differently affect the papilla height during the first year of loading.
- Due to the heterogeneity of the time point of baseline measurements and the contradictory findings in the studies it is difficult to draw clear conclusions regarding the recession of the buccal mucosa between immediately and conventionally loaded implants.
- With respect to the assessment of esthetic outcomes, the data available remain inconclusive.
- Patient satisfaction was measured in only very few trials rendering insufficient data to draw conclusions.

There is a need for well-designed prospective randomized controlled trials investigating the effectiveness of different loading protocols.

Future investigations should ideally focus on clinically relevant parameters able to assess whether or not the treatment goal of a given therapy has been achieved. A standardized use of patient-reported outcome measures is, therefore, recommended to understand the benefit of a treatment from the patients’ perspectives. Moreover, clinical trials should include analyses of the cost-effectiveness of the examined therapy.

To assess the esthetic outcome of an intervention, the use of reproducible methods and validated indices is recommended. More studies are needed comparing different loading protocols regarding their effect on the mucosal level over time. For repeated metric assessments, adequate reference structures should be selected for baseline and follow-up measurements.

Baseline assessments should be performed prior to the intervention under investigation. Therefore, in cases of immediate loading, baseline measurement is ideally performed at implant placement. However, to truly understand the influence of treatment timing on the therapeutic outcomes, future studies should be designed to investigate both the effects of the time point of implant placement and the time point of loading. For studies investigating the timing of implant placement, baseline measurements should be assessed prior to tooth extraction. Finally, there is a need for more long-term observation.

ACKNOWLEDGMENTS

The investigators gratefully acknowledge Malgorzata Roos, PhD (Department of Biostatistics, University of Zurich, Zurich, Switzerland) for assistance in analyzing the data and Gisela Müller (Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland) for assistance in preparing the manuscript.

The present systematic review was funded by the Clinic of Fixed and Removable Prosthodontics and Dental Material Science, University of Zurich, Switzerland.

The authors declare no conflict of interest regarding any part of the systematic review.
REFERENCES

